УДК 577.322: 537.632.5

ИЗМЕНЕНИЕ СПЕКТРАЛЬНЫХ ХАРАКТЕРИСТИК МЕТГЕМОГЛОБИНА В УСЛОВИЯХ ЕГО ВЗАИМОДЕЙСТВИЯ С ХЛОРОФОРМОМ ПОД ДЕЙСТВИЕМ МАГНИТНОГО ПОЛЯ КРАЙНЕ НИЗКОЙ ЧАСТОТЫ

Мартынюк В.С., Цейслер Ю.В.

ВВЕДЕНИЕ

В настоящее время результаты отдельных экспериментальных исследований, проведенных на моделях связывания низкомолекулярных неполярных веществ с сывороточным альбумином и цитохромом с, свидетельствуют о том, что первичные механизмы действия магнитных полей крайне низких частот (МП КНЧ) проявляются на уроне изменений гидрофобно-гидрофильного баланса в водно-коллоидных системах [1-3]. Однако не известно как проявляются эффекты МП КНЧ на других белковых моделях, близких по своим структурным свойствам. В связи с этим целью данной работы было изучение действия МП КНЧ на взаимодействие хлороформа с метгемоглобином.

МАТЕРИАЛЫ И МЕТОДЫ

В настоящем исследовании, как и в ряде предыдущих работ [1-3], в качестве базовой экспериментальной модели было использовано явление насыщения растворов биополимера низкомолекулярным лигандом гидрофобной природы (рис. 1).

Насыщение растворов *метгемоглобина* хлороформом осуществляли в стеклянных бюксах объёмом 5 мл путем наслаивания 3 мл раствора белка на 1.5 мл лиганда с последующей инкубацией образцов при комнатной температуре. Инкубацию образцов проводили в течение 1, 2, 4 и 24 часов, по окончании которой регистрировали интегральные спектры растворов *метгемоглобина*, насыщенных хлороформом. Дифференциальные спектры получали как разность между интегральными спектрами растворов *метгемоглобина*, нагруженного хлороформом, и нативного белка.

Импульсное МП создавали системой колец Гельмгольца. Импульсы были прямоугольной формы и разной полярности. Частота магнитного поля составляла 8 Гц, индукция 25 µТ. Частота МП выбрана на основе ее экологической и геофизической значимости [4]. Вектор индукции создаваемого магнитного поля был параллелен вектору геомагнитного поля. Опытные образцы помещали в экспериментальную установку. Экспозиция образцов в переменном магнитном поле составляла 1, 2, 4 и 24 часа. Контрольные пробы находились в условиях фоновых значений ЭМП, характерных для данной лаборатории (20-65 пТ). Для оценки возможного влияния различий в уровне фоновых МП в местах расположения опытных и контрольных образцов проводили эксперименты с ложным воздействием МП. В этом случае опытные образцы помещали в кольца Гельмгольца, но не подвергали действию МП.

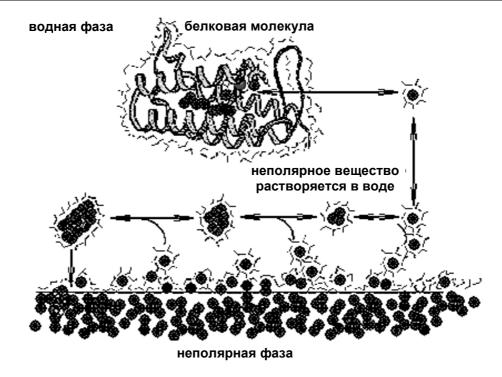


Рис. 1. Экспериментальная модель специфического взаимодействия неполярных лигандов с белковой молекулой.

Объектом исследования служили 0.02 %-ные растворы лиофильного препарата *метгемоглобина* (Fluka), насыщаемые хлороформом. О связывании неспецифического лиганда с белком судили по характерным изменениям спектра поглощения *метгемоглобина* в области основной полосы поглощения гемма — пика Соре (рис. 2).

Математическую обработку результатов исследования проводили в соответствии с общепринятыми правилами вариационной статистики. Для оценки достоверности различий использовали t-критерий Стьюдента.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рисунке 3 представлены спектры поглощения метгемоглобина в области полосы Соре после его инкубации с хлороформом. Как видно, связывание хлороформа с белком приводит, с одной стороны, к выраженному гипохромному эффекту, а с другой, — к длинноволновому («красному») смещению максимума поглощения. Данные изменения свидетельствуют о том, что при взаимодействии хлороформа с данным белком полярность среды, окружающей хромофор (гем) снижается. Вероятно, такие изменения могут быть вызваны либо вытеснением молекул воды из ближайшего окружения хромофора, либо конформационными изменениями полипептидной цепи, приводящими к соответствующим изменениям в пространственном расположении аминокислотных радикалов.

Одновременно с этим, имеющий место гипохромный эффект может указывать на более тесное взаимодействие хромофоров друг с другом. Такое усиление

взаимодействия может быть реализовано в условиях упорядоченной агрегации молекул метгемоглобина в результате их взаимодействия с хлороформом.

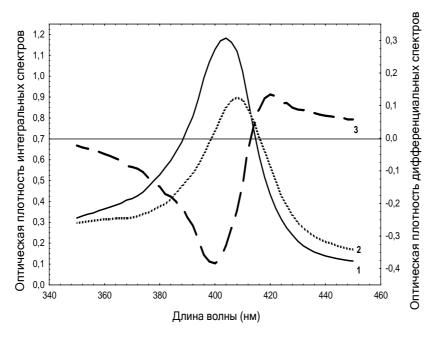


Рис. 2 Интегральные (1 – контрольный спектр интактного белка, 2 – спектр белка, насыщенного хлороформом) и дифференциальный (3) спектры 0.02%-ных растворов *метгемоглобина* при его взаимодействии с хлороформом.

Анализ основных характеристик спектра поглощения метгемоглобина показал, что воздействие МП КНЧ приводило к усилению «красного сдвига» (табл. 1). При этом в экспериментах с ложным воздействием достоверных изменений не обнаружено (табл. 2). Это указывает на то, что МП КНЧ достоверно усиливает связывание хлороформа с исследуемым белком и стимулирует более глубокие конформационные перестройки в молекуле метгемоглобина при его нагрузке гидрофобным низкомолекулярным лигандом.

Анализ дифференциальных спектров показывает, что воздействие МП КНЧ в условиях взаимодействия с метгемоглобином не только вызывает «красный» сдвиг, но и также изменяет форму спектра. Результаты анализа основных характеристик дифференциальных спектров, представленных в таблице 3, показывает, что в экспериментальных условиях связывания хлороформа с метгемоглобином воздействие МП КНЧ проявляется также в виде сужения полосы Соре, что проявляется в виде достоверного смещения максимума на дифференциальном спектре в область более коротких длин волн. Следует однако отметить, что эти изменения носят динамический характер и наиболее выражены в первые часы инкубации метгемоглобина с хлороформом или же после длительной суточной экспозиции (табл 1 и 3).

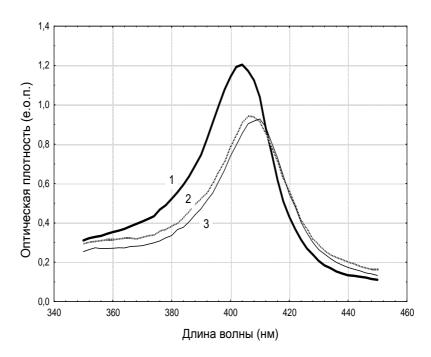


Рис. 3. График сравнения интегральных спектров 0.02%-ных растворов метгемоглобина:

- 1 контрольный спектр интактного белка,
- 2 спектр белка, контактирующего с хлороформом
- 3 спектр белка, контактирующего с хлороформом под действием МП КНЧ.

Табл. 1 Основные характеристики интегральных спектров *метгемоглобина*, взаимодействующего с хлороформом под влиянием ЭПМ частотой 8 Гц 25 мкТл в промежутке 350-450 нм

Время экспо- зиции (ч)	Параметр	Контроль- ные образцы	Воздействие магнитным полем	Взаимо- действие с хлороформом	Взаимодействие с хлороформом под действием магнитного поля	Индуцированные магнитным полем изменения (нм)
1	λ_{max} , HM	404,0±0,3	403,8±0,2	408,0±0,5*	409,3±0,5*	+1.3
2	λ_{max} , нм	403,8±0,2	404,8±0,3	406,8±0,3*	409,3±0,6*,**	+2.5
4	λ _{max} ,, HM	404±0,3	404,2±0,2	407,3±0,9*	408,2±0,4*	+0.9
24	λ_{max} , HM	405,0±0,5	404,6±0,3	407,6±0,6*	409,1±0,7*	+1.2
1-24	$\Delta \lambda_{mean, HM}$					+ 1,47±0,35 P<0,05
1	D _{max} , e.o.п	1,196±0,070	1,219±0,065	0,978±0,072*	0,967±0,071*	
2	D_{max} , е.о.п	1,254±0,062	1,230±0,055	0,957±0,057*	0,934±0,060*	
4	D_{max} , е.о.п	1,193±0,058	1,229±0,057	0,947±0,053*	0,985±0,054*	
24	D_{max} , е.о.п	1,206±0,062	$1,185\pm0,085$	0,849±0,090*	0,853±0,058*	

<u>Примечание:</u> * – достоверные отличия относительно контрольных образцов;

^{** –} достоверные отличия относительно ложной экспозиции.

ИЗМЕНЕНИЕ СПЕКТРАЛЬНЫХ ХАРАКТЕРИСТИК МЕТГЕМОГЛОБИНА В УСЛОВИЯХ ЕГО ВЗАИМОДЕЙСТВИЯ С ХЛОРОФОРМОМ ПОД ДЕЙСТВИЕМ МАГНИТНОГО ПОЛЯ КРАЙНЕ НИЗКОЙ ЧАСТОТЫ

Табл. 2 Основные характеристики интегральных спектров *метгемоглобина*, взаимодействующего с хлороформом при ложном действии ЭПМ частотой 8 Гц 25 мкТл в промежутке 350-450 нм

Время экспо- зиции (ч)	Параметр	Контроль- ные образцы	Ложное воздействие	Взаимо- действие с хлороформом	Взаимодействие с хлороформом при ложном воздействии	Изменение длины волны (нм)
1	$\lambda_{max,}$ нм	404,4±0,3	404,2±0,2	408,5±0,4*	409,1±0,3*	+0.6
2	$\lambda_{max,}$ нм	404,2±0,2	404,0±0,0	407,8±0,5*	408,4±0,4*	+0.6
4	$\lambda_{max,}$ нм	404,4±0,4	404,0±0,0	407,6±0,4*	407,7±0,4*	+0.1
24	$\lambda_{max,}$ нм	404,4±0,3	404,0±0,0	408,6±0,3*	408,2±0,2*	-0.4
1-24	$\Delta\lambda_{mean, HM}$					+0,22±0,23
1	D _{max} , e.o.п	1,207±0,020	1,197±0,020	0,991±0,057*	1,006±0,046*	
2	D _{max} , e.o.п	1,208±0,022	1,150±0,051	0,989±0,044*	0,992±0,043*	
4	D _{max} , e.o.п	1,239±0,017	1,218±0,085	0,909±0,045*	0,958±0,056*	
24	D _{max} , e.o.п	1,280±0,062	1,258±0,086	0,919±0,110*	0,946±0,097*	

Примечание: *- достоверные отличия относительно контрольных образцов;

Проводя сравнение результатов настоящего исследования с ранее полученными экспериментальными данными необходимо обратить внимание, что в экспериментах с другим гем-содержащим белком — *цитохромом с*, находящимся в окисленном состоянии, имел место противоположный по направлении спектральный сдвиг — «голубой» сдвиг, свидетельствующий о повышении полярности среды, окружающей гемм [3]. Факт различной реакции гем-содержащих белков на их взаимодействие с низкомолекулярными неполярными веществами требует отдельных исследований.

Табл. 3 Влияния ЭМП частотой 8 Γ ц 25 мкТл на основные характеристики дифференциальных спектров метемоглобина, насыщаемого хлороформом, на протяжении 350-450 нм

Время экспо- зиции (ч)	Параметр	Контрольны е образцы	Воздействие магнитным полем	Ложное воздействие	Изменение относительно контрольных образцов (%)	Изменение относительно ложного воздействия (%)
1	λ _{max} , нм	419,8±0,7	419,4±0,7	419,4±1,1	-0,1	+0,0
2	λ _{max} , нм	419,2±0,8	418,7±1,1	419,0±1,5	-0,1	-0,1
4	λ _{тах} ,, нм	421,2±1,3	419,8±1,1	421,8±1,4	-0,3	-0,5
24	λ ^{max} , нм	422,7±1,6	417,9±1,0 *,**	424,0±2,0	-1,1	-1,4
1	λ _{min} , нм	399,1±0,7	395,7±1,4 *,**	400,0±0,8	-0,9	-1,1
2	λ _{min} , нм	398,7±0,5	398,8±0,6	398,4±0,9	0,0	+0,1
4	λ _{min} , нм	397,9±1,23	398,6±0,4	399,2±0,7	+0,2	-0,2
24	λ _{min} , нм	398,9±0,9	398,0±0,7	397,8±1,7	-0,2	+0,1
1	λ_{max} - λ_{min} , нм	19,6±0,6	24,9±1,8 *,**	19,1±0,9	+27,0	+30,0
2	λ_{max} - λ_{min} , нм	20,5±0,9	19,9±1,2	20,6±1,6	-2,9	-3,4
4	λ_{max} - λ_{min} , нм	23,3±1,1	21,2±1,1	22,6±0,9	-9,0	-6,2
24	λ_{max} - λ_{min} , нм	23,8±1,4	21,1±1,4	22,5±2,0	-11,3	-6,2
1	D _{max} -D _{min} , е.о.п.	0,589±0,036	0,639±0,055	0,670±0,049	+8,5	-4,6
2	D _{max} -D _{min} , e.o.п.	0,543±0,032	0,592±0,038	0,552±0,055	+9,0	+7,2
4	D _{max} -D _{min} , e.o.п.	0,590±0,029	0,546±0,036	0,591±0,034	-7,5	-7,6
24	D _{max} -D _{min} , е.о.п.	0,602±0,028	0,594±0,058	0,558±0,039	-1,3	+6,5

Примечание: *- достоверные отличия относительно контрольных образцов;

выводы

- 1. Насыщение метгемоглобина хлороформом сопровождается спектральным сдвигом полосы Соре в область больших длин волн («красный» сдвиг) и снижением интенсивности поглощения света на максимуме (гипохромный эффект).
- 2. Воздействие МП КНЧ в условиях нагрузки исследуемого белка хлороформом приводит к усилению «красного» сдвига полосы Соре и изменению ее формы, что свидетельствует о влиянии МП КНЧ на конформационное состояние молекулы метгемоглобина.

^{** –} достоверные отличия относительно ложной экспозиции.

ИЗМЕНЕНИЕ СПЕКТРАЛЬНЫХ ХАРАКТЕРИСТИК МЕТГЕМОГЛОБИНА В УСЛОВИЯХ ЕГО ВЗАИМОДЕЙСТВИЯ С ХЛОРОФОРМОМ ПОД ДЕЙСТВИЕМ МАГНИТНОГО ПОЛЯ КРАЙНЕ НИЗКОЙ ЧАСТОТЫ

Список литературы

- 1. Калиновский П. С., Мартынок В. С. Действие переменных магнитных полей на связывание гидрофобных лигандов сывороточным альбумином // Учёные записки Таврического национального университета им. В. И. Вернадского. Сер. «Биология». 2000. Т. 14, №2. С. 89-93.
- 2. Мартынюк В.С., Шадрина О.Г. Влияние переменного магнитного поля крайне низкой частоты на растворимость бензола в воде и растворах белка // Биомедицинская радиоэлектроника. 1999, № 2. С. 56-60.
- 3. Мартынюк В. С., Калиновский П. С., Цейслер Ю. В. Влияние слабого магнитного поля крайне низкой частоты на спектральные характеристики цитохрома *с* в присутствии хлороформа // Учёные записки Таврического национального университета им. В. И. Вернадского/ Сер. "Биология". 2002. Т. 14, №3. С.121-126.
- 4. Владимирский Б.М., Темурьянц Н.А., Мартынюк В.С. Космическая погода и наша жизнь. Фрязино: Изд-во «Век 2», 2004. 224 с.

Поступила в редакцию 11.11.2004 г.